# Level III Reliability Based Design of Examples set by ETC10

Y. Honjo, T. Hara & T.C. Kieu Le Gifu University, Japan



# **Table of contents**

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions



# **Table of contents**

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions



## Classification of Reliability based Design in Structure Engineering

| Design<br>Method                  | Basic Variables                                                   | Reliability<br>Assessment | Verification              |
|-----------------------------------|-------------------------------------------------------------------|---------------------------|---------------------------|
| Level III<br>Full<br>distribution | Random variables<br>Probability distributions                     | Failure<br>Probability    | Cost<br>Optimization etc. |
| <b>Level ΙΙ</b><br>FORM and β     | Random variables<br>Mean, SD & Covariances<br>(Distribution Free) | Reliability index $\beta$ | Target $\beta_T$          |
| Level I<br>Partial factors        | Deterministic variables                                           | Partial factors<br>LRFD   | Verification<br>formula   |



## Level III RBD Full distribution approach



Design structures so that

 $P_f \leq P_{fT}$ 

## Level III RBD Full distribution approach



where *R* : resistance  $R \sim N(\mu_R, \sigma_R^2)$  *S* : force  $S \sim N(\mu_S, \sigma_S^2)$  *M* : safety margin, and  $M \sim N(\mu_M, \sigma_M^2)$ where  $\mu_M = \mu_R - \mu_S$ ,  $\sigma_M^2 = \sqrt{\sigma_R^2 + \sigma_S^2}$ therefore,  $P_f = P[M \le 0]$ 

# Level II RBD (reliability based design): FORM and Reliability Index



M = R - S

$$\rightarrow \beta = \frac{\mu_M}{\sigma_M} = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2}}$$

M: safety margin $R: \text{ resistance } \sim N(\mu_R, \sigma_R^2)$  $S: \text{ force } \sim N(\mu_S, \sigma_S^2)$  $\beta: \text{ reliability index}$  $P_f = P[M \le 0]$ 

**Table 1.3 Relationship between**  $\beta$  and  $P_f$  (Normal distribution)

| A | <b>P</b> <sub>f</sub> | 10-1 | 5 x 10 <sup>-2</sup> | 10 <sup>-2</sup> | 10 <sup>-3</sup> | 10-4 |
|---|-----------------------|------|----------------------|------------------|------------------|------|
|   | β                     | 1.28 | 1.64                 | 2.32             | 3.09             | 3.72 |
|   |                       |      |                      |                  |                  |      |

# Level II: Recommended *β*-values (examples)

| Reliability<br>class (RC) | Min $\beta$ for 50 years for U.L.S. | Limit State | Target $\beta$ for 50 years (RC2) |
|---------------------------|-------------------------------------|-------------|-----------------------------------|
| RC3                       | 4.3                                 | U.L.S.      | 3.8                               |
| RC2                       | 3.8                                 | Fatigue     | 1.5 – 3.8                         |
| RC1                       | 3.3                                 | S.L.S.      | 1.5 (irreversible)                |

#### **Table 1.1** $\beta$ recommended in EN 1990 annex B

**Table 1.2** Target  $\beta$  values (life time examples) in ISO2394

|   |                                  | Consequences of failure |                 |                    | ire              |
|---|----------------------------------|-------------------------|-----------------|--------------------|------------------|
|   | Relative cost of safety measures | little                  | some            | moderat<br>e       | great            |
|   | high                             | 0.0                     | 1.5             | 2.3                | 3.1              |
| 1 | moderate                         | 1.3                     | 2.3             | 3.1                | 3.8              |
|   | low                              | 2.3                     | 3.1             | 3.8                | 4.3              |
|   | 2nd Internatio                   | nal Workshop or         | n Evaluation of | Eurocode 7, Pavia, | Italy, April 201 |

# Level | RBD: partial factors / LRFD format



By determining partial factors based on Level II or III RBD, one can incorporate the intended safety margin (e.g.  $\beta_{T}$ ) Into structures. This is the mission of code writers to fix these partial factor values in this way (code calibration).



# Level I RBD: partial factors approach



Given the target reliability level (e.g.  $\beta_T$ ), and assuming  $\sigma_R^2$  and  $\sigma_S^2$  are known, one determine the distance between  $\mu_R$  and  $\mu_S$ by partial factors.



# **Table of contents**

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions



# Two sources of LSD in Structural Eurocodes

#### Structure Engineering

- Classic Reliability based Design by Fredenthal et al. (from 1940<sup>th</sup>)
- FOSM by Cornell(1969) and FORM by Ditlevsen (1973); Hasofer & Lind (1974) etc.
- Activities of JCSS (Joint Committee on Structural Safety)
- Eurocodes 0,1,2,3 ...

## > Geotechnical Engineering

- Brinch Hansen (1956, 1967) and Danish Code of Practice for Foundation Structures (LSD and partial factors of safety)
- K.N. Ovesen et al., Draft model code for Eurocode 7 (1987)
- Eurocode 7



# Development of LSD and partial safety factors in Eurocode – Structural Design

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

# Development of LSD and partial safety factors in Eurocode - Geotechnical Design

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

# Partial safety factor: contributions from geotechnical engineering

A consistent code formulation of a detailed partial safety factor principle was started in the 1950's in Denmark before other places in the world. This development got particular support from the considerations of J. Brinch Hansen who applied the principles in the field of soil mechanics.

(Ditlevsen and Madsen, *Structural Reliability Methods* (1996), p.31)

# Purposes of this presentation

- Try to fill the gap between the two approaches, i.e. geotechnical and structural, or EC7 and other ECs.
- Estimate degree of reliability embedded in various design so as to make comparison of reliability possible among various design results.

# **Table of contents**

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions

![](_page_16_Figure_12.jpeg)

# **Uncertainties in Geotechnical Design**

![](_page_17_Figure_1.jpeg)

## **Procedures for different examples**

![](_page_18_Figure_1.jpeg)

# Table of contents

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions

![](_page_19_Figure_12.jpeg)

## EX2-1: Pad foundation on sand

![](_page_20_Figure_1.jpeg)

![](_page_21_Picture_0.jpeg)

#### EX2-1(SLS): Trend and Random Components of CRT qc

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

#### EX2-1(SLS): estimation error - auto correlation of CPT qc

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_0.jpeg)

# EX2-1(SLS): from qc to Young modulus E'

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

# EX2-1(SLS): from qc to E'

![](_page_24_Figure_2.jpeg)

PDF of the bias

$$\delta_E = \frac{5(q_c - \sigma'_{v0})}{D}$$

Mean of  $\delta_E = 1.14$ SD of  $\delta_E = 0.94$ Following Lognormal distribution

![](_page_25_Picture_0.jpeg)

# EX2-1(SLS): Load Uncertainties

| Permanent<br>load (Gk) | $\delta_{Gk}$ | 1.0 | 0.1               | Normal <sup>(2)</sup> |
|------------------------|---------------|-----|-------------------|-----------------------|
| Variable load<br>(Qk)  | $\delta_{Qk}$ | 0.6 | 0.35x0.6<br>=0.21 | Gumbel distribution   |

Based on JCSS(2001) and Holicky, M, J. Markova and H. Gulvanessian (2007).

![](_page_25_Figure_4.jpeg)

![](_page_26_Figure_0.jpeg)

## EX2-1(SLS): Geotechnical design tools -> 3D PLAXIS Elastic analysis (5 cases)

Table 2.2 The settlement of the pad foundation by 3D PLAXIS

| Width B (m)       | 4    | 3    | 2    | 1     | 0.5   |
|-------------------|------|------|------|-------|-------|
| Settlement s (mm) | 4.24 | 6.51 | 9.32 | 16.13 | 24.59 |

the relationship between B and s:

$$s = 17.0 - 9.73 \log B$$
 (7)

 $(R^2 = 0.989)$ , the perfect fit

it is expected that the settlement would be double if Young's modulus is half:

$$s = (17.0 - 9.73 \log B) / I_E$$
 (8)

 $I_E$ : a normalized Young's modulus.

![](_page_27_Picture_0.jpeg)

#### EX2-1(SLS): The contour and a bird view of the Response surface

![](_page_27_Figure_2.jpeg)

Width of footing (m)

 $s = (17.0 - 9.73 \log B)/I_{F}$ 

![](_page_28_Figure_0.jpeg)

$$s = \frac{(17.0 - 9.73\log(B))}{I_E \cdot \delta_E} \left( \frac{\gamma \cdot D_f \cdot B^2 + G_k \delta_{Gk} + Q_k \delta_{Qk}}{\gamma \cdot D_f \cdot B^2 + G_k + Q_k} \right)$$
$$= \frac{(17.0 - 9.73\log(B))}{I_E \cdot \delta_E} \left( \frac{20 \cdot B^2 + 1000 \delta_{Gvk} + 750 \delta_{Qvk}}{20 \cdot B^2 + 1750} \right)$$

| Basic variables                                           | Notation      |
|-----------------------------------------------------------|---------------|
| Estimation error of spatial average of E' for 2(m) depth. | $I_E$         |
| Transformation error on E'                                | $\delta_{E}$  |
| Permanent load                                            | $\delta_{Gk}$ |
| Variable load                                             | $\delta_{Qk}$ |

![](_page_29_Picture_0.jpeg)

## EX2-1(SLS): List of basic variables

| Basic variables                                                  | Nota-<br>tion | mean                          | SD                                                 | Distribution<br>type                  |
|------------------------------------------------------------------|---------------|-------------------------------|----------------------------------------------------|---------------------------------------|
| Estimation error of spatial average of <i>E</i> 'for 2(m) depth. | Ш             | E'=47.43<br>+ 7.38 z<br>(MPa) | 7.2(MPa)<br>COV=0.12 <sup>(1)</sup><br>at z=1.5(m) | Normal                                |
| Transformation<br>error on <i>E</i> '                            | $\delta_{E}$  | 1.14                          | 0.94                                               | Lognormal                             |
| Permanent load                                                   | $\delta_{Gk}$ | 1.0                           | 0.1                                                | Normal <sup>(2)</sup>                 |
| Variable load                                                    | $\delta_{Qk}$ | 0.6                           | 0.35x0.6<br>=0.21                                  | Gumbel<br>distribution <sup>(2)</sup> |

(Note 1) COV at about z=1.5 (m) is calculated to represent estimation error of E' based on limited number of samples.

(Note 2) Based on JCSS(2001) and Holicky, M, J. Markova and

L Gulvanessian (2007).

![](_page_30_Figure_0.jpeg)

# Table of contents

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions

![](_page_31_Figure_12.jpeg)

![](_page_32_Figure_0.jpeg)

**EX2-1(ULS):** CPT  $q_c$  to  $\phi'$ 

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

 $\phi'_{tc} = 17.6 + 11.0 \log \left( \begin{pmatrix} q_c \\ p_a \end{pmatrix} \right) \\ \left( \sigma'_{v0} \\ p_a \end{pmatrix}^{0.5}$ 

where  $p_a$  = atmospheric pressure(0.1MPa)  $\sigma'_{\nu 0}$  = effective overburden stress. SD for transformation = 2.8 (degree). (Kulhawy et al. 1990)

![](_page_33_Figure_0.jpeg)

**EX2-1(ULS)**: spatial variability of  $\phi'$ 

![](_page_33_Figure_2.jpeg)

spatial average of  $\phi'_{tc} = 42.8$ (degree) and SD=0.60 (degree).

![](_page_34_Figure_0.jpeg)

$$\begin{split} R_{u} &= A_{e} \left\{ \kappa.q.N_{q}.S_{q} + \frac{1}{2}.\gamma_{1}.\beta.B_{e}.N_{\gamma}.S_{\gamma} \right. \\ \kappa &= 1 + 0.3 \frac{D_{f}}{B_{e}} = 1 + 0.3 \frac{0.8}{B_{e}} = 1 + \frac{0.24}{B_{e}} \\ q &= \gamma_{2}.D_{f} = 20 \times 0.8 = 16 \text{ (kN/m}^{2}) \\ N_{q} &= \frac{1 + \sin\phi}{1 - \sin\phi}.\exp(\pi.\tan\phi) \end{split}$$

$$S_q = \left(\frac{q}{q_0}\right)^{-1/3} = \left(\frac{16}{10}\right)^{-1/3} = 0.86$$
  

$$\gamma_1 = 20 \text{ (kN/m}^3\text{)}$$
  

$$\beta = 0.6$$
  

$$N_{\gamma} = \left(N_q - 1\right) \times \tan\left(1.4\phi\right)$$

$$S_{\gamma} = \left(\frac{B_e}{B_0}\right)^{-1/3} = \left(\frac{B_e}{1.0}\right)^{-1/3} = B_e^{-1/3}$$

where  $A_e$  = the effective area of the foundation (= $B_2$ ),  $B_e$  = effective width (in this case  $B_e = B$ ),  $\kappa$  and  $\beta$  = shape factors for  $N_q$  $N_g$ , q = overburden pressure at the foundation bottom,  $D'_f$  = embedded depth (m),  $S_q$  and  $S_\gamma$  = scale factor for  $N_q$  and  $N_\gamma$ .  $B_0$  and  $q_0$  = reference width and load respectively.

Kohno et.al (2009) Model error: the bias = 0.894 with SD = 0.257.

![](_page_35_Figure_0.jpeg)

#### EX2-1(ULS): Reliability analysis by MCS

$$M = Ru(B, \phi'_{tc}) \cdot \delta_{Ru} - G_k \cdot \delta_{Gk} - Q_k \cdot \delta_{Qk}$$

where M = safety margin, Ru = bearing capacity of the foundation, Gk =1000(kN), Qk = 750(kN) , B=width of footing

| Basic variables                                 | Notation      | Mean  | SD            | Distribution type      |
|-------------------------------------------------|---------------|-------|---------------|------------------------|
| Spatial variability                             | $\phi'_{tc}$  | 42.8  | 0             | Deterministic variable |
| Transformation error from $q_c$ to $\phi'_{tc}$ | $\phi'_{tc}$  | 42.8  | 2.8           | Normal                 |
| $R_u$ estimation error                          | $\delta_{Ru}$ | 0.894 | 0.257         | Lognormal              |
| Permanent action                                | $\delta_{Gk}$ | 1.0   | 0.1           | Normal                 |
| Variable action                                 | $\delta_{Qk}$ | 0.6   | 0.35x0.6=0.21 | Gumbel distribution    |

![](_page_36_Figure_0.jpeg)

EX2-1(ULS): results of the reliability analysis

![](_page_36_Figure_2.jpeg)

After 100,000 MCS runs

 $\beta$ = 3.8 (i.e. 10<sup>-4</sup> failure probability for 50 years design working life. )

B=2.2 (m)

# Summary of EX2-1: Pad foundation

| Limit state       | Target $\beta$ for 50 years design working life. (P <sub>f</sub> ) | Required<br>width (m) |
|-------------------|--------------------------------------------------------------------|-----------------------|
| S.L.S.(s < 25 mm) | 1.5 (0.067)                                                        | B > 2.4 (m)           |
| U.L.S.(stability) | 3.8 (10-4)                                                         | B > 2.2 (m)           |

![](_page_37_Picture_2.jpeg)

# Summary of EX2-1: Pad foundation

- 1. If all average values obtained for basic variables
  - SLS: only 0.5 (m) -> 2.4 (m) (4.8 times)
  - ULS: 0.85 (m) for -> 2.2 (m) (2.6 times)
- 2. The uncertainty components contributing the design
  - the conversion of *qc* to Young's modulus for settlement (SLS).
  - the model error in the bearing capacity equation for bearing capacity (ULS).
  - The contribution of spatial variability of soil properties on total uncertainty is not as large.

# Table of contents

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - RSM (Response Surface Method)
  - General conclutions

![](_page_39_Figure_12.jpeg)

# EX 2-5 : EMBANKMENT OF SOFT PEAT

![](_page_40_Figure_1.jpeg)

- An embankment on a soft peat with final height 3 (m)
- determine the first stage embankment height.
- The Embankment material  $\gamma = 19 \text{ (kN/m3)}$ ,  $\phi'_k = 32.5 \text{ (degree)}$ .
- Top soil : normally consolidated clay ( $\gamma = 1.8$ (kN/m<sup>3</sup>) and  $\gamma' = 9$  (kN/m<sup>3</sup>)
- 3 to 7 (m) thick peat layer with  $\gamma' = 2 (kN/m^3)$  overlaying
- Pleistocene sand of  $\gamma' = 11$ (kN/m<sup>3</sup>) and  $\phi'_{k} = 35$  (degree).
- 5 filed vane test (FVT) results are given whose testing interval is 0.5 (m)

![](_page_41_Figure_0.jpeg)

#### EX 2-5 : Spatial variability of soil and modeling

#### Undrained shear strength of the topsoil

| Mean (kPa) | SD (kPa) | COV   |
|------------|----------|-------|
| 21.04      | 3.44     | 0.163 |

#### Alternative models fitted to su of the peat layer

| Models    | Trend (kPa)                                                 | SD   | AIC    | Note                                        |
|-----------|-------------------------------------------------------------|------|--------|---------------------------------------------|
| Constant  | 10.33                                                       | 2.89 | 196.52 |                                             |
| Linear    | 9.3677 + 0.3221z<br>(9.40) (1.085)                          | 2.85 | 197.30 | <i>R</i> <sup>2</sup> = 0.031<br>(t-values) |
| Quadratic | 14.73 - 3.51z + 0.536z <sup>2</sup><br>(9.04) (3.42) (3.85) | 2.40 | 185.82 | <i>R</i> <sup>2</sup> = 0.314<br>(t-values) |

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

EX2-5: Range of values used in obtaining RS (135 cases)

| <i>h</i> (m)      | l <sub>peat</sub> | l <sub>topsoil</sub> | $D_t(m)$      |
|-------------------|-------------------|----------------------|---------------|
| 1, 1.5, 2, 2.5. 3 | 0.5, 0.75, 1.0    | 0.5, 0.75, 1.0       | 0.5,0.75, 1.0 |

 $I_{peat} = s_u / (\text{mean of } s_u \text{ of the peat layer})$ 

| $I_{topsoil} = S_u$ | /(mean of $s_u$ | of the topsoil) = $s_u$ | /21.04 |
|---------------------|-----------------|-------------------------|--------|
|---------------------|-----------------|-------------------------|--------|

| model      | equation                                                               | r.s.e. | R <sup>2</sup> |
|------------|------------------------------------------------------------------------|--------|----------------|
| Linear     | F <sub>s</sub> =0.948-0.449 <i>h</i> + 1.154 <i>I<sub>peat</sub></i> + | 0.0985 | 0.823          |
|            | $0.272 I_{topsoil} + 0.047 D_t$                                        |        |                |
| Quadratic  | <i>Fs</i> =1.783-1.351 <i>h</i> + 0.213 <i>h</i> <sup>2</sup> + 1.156  | 0.0533 | 0.949          |
|            | $I_{peat} + 0.272 I_{topsoil} + 0.091 D_t$                             |        |                |
| logalismic | $Fs=0.595-0.915 \log(h) + 1.181 I_{peat} +$                            | 0.0645 | 0.924          |
|            | $0.272 I_{topsoil} + 0.079 D_t$                                        |        |                |

![](_page_44_Figure_0.jpeg)

## EX2-5: Height vs. Fs and Response surface

![](_page_44_Figure_2.jpeg)

![](_page_45_Figure_0.jpeg)

EX2-5:Model error in stability analysis of embankment

39 failure cases of embankment on soft ground by FV/UU compression tests and  $\phi'=0$  circular slip method, and Fs distributed between Fs= 0.9 to 1.1.

![](_page_45_Figure_3.jpeg)

| Spatial<br>variability                                                                   | Respo                                            | onse Model<br>ace error                   | Reliab<br>analys              | ility<br>sis           |
|------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------|------------------------|
| Basic variables                                                                          | Notations                                        | mean                                      | SD                            | Distribution           |
| Topsoil s <sub>u</sub> (kPa)                                                             | S <sub>upeat</sub><br>(I <sub>peat</sub> )       | 21.04<br>(1.0)                            | 3.44<br>(0.163)               | Normal                 |
| Peat s <sub>u</sub> (kPa)                                                                | S <sub>utopsoil</sub><br>(I <sub>topsoil</sub> ) | 14.73-3.51z +0.536z <sup>2</sup><br>(1.0) | 1.20<br>(0.13) <sup>(1)</sup> | Normal                 |
| Topsoil thickness                                                                        | $D_t$                                            | [0.5, 1.0] (m)                            |                               | Uniform <sup>(2)</sup> |
| Model error                                                                              | $\delta_{\!Fs}$                                  | [0.9, 1.0]                                |                               | Uniform <sup>(3)</sup> |
| Unit weight of<br>embankment                                                             | $\gamma_{f}$                                     | 19.0(kN/m <sup>3</sup> )                  | -                             | Deterministic          |
| friction of embankment                                                                   | $\phi_{\!f}$                                     | 32.5 degree                               | -                             | Deterministic          |
| Unit weight of topsoil                                                                   | $\gamma_c$                                       | 9.0(kN/m <sup>3</sup> )                   | -                             | Deterministic          |
| Unit weight of peat                                                                      | $\gamma_P$ '                                     | 2.0(kN/m <sup>3</sup> )                   | -                             | Deterministic          |
| friction of sand                                                                         | $\phi_{_S}$                                      | 35 degree                                 | -                             | Deterministic          |
| Unit weight of sand                                                                      | $\gamma_s$ '                                     | 11.0(kN/m <sup>3</sup> )                  | -                             | Deterministic          |
| (Note the topsoil (at z=4.0(m)) = 14.73 - 3.5x4.0 + 0.53x4.02 = 9.27, COV=1.20/9.27=0.13 |                                                  |                                           |                               |                        |

(Note 2) It is assumed that the boundary of the topsoil and the peat layer lies somewhere between z = 0.5 to 1.0 (m). (Note 3) Based on Matsumed Asaoka (1976).

![](_page_47_Figure_0.jpeg)

EX2-5: reliability analysis by RS and MCS

# The response surface for the safety factor

 $Fs = (1.783 - 1.351 h + 0.213 h^{2} + 1.156 I_{peat} + 0.272 I_{topsoil} + 0.091 D_{t}) \delta_{Fs}$ 

After 100,000 MCS runs, to obtain  $Pf = P [Fs \le 1.0]$ 

![](_page_48_Figure_0.jpeg)

<sup>2</sup>nd International Workshop on Evaluation of Eurocode 7, Pavia, Italy, April 2010

# EX2-5: Summary and discussions

- Based on the RS, one can evaluate the contribution of each basic variable to the safety of the embankment. For example,
  - The effect of the height of the embankment becomes less as the embankment height increase, which is indicated by the quadratic function.
  - 10% reduction of peat strength reduces the safety factor by 0.12. The reduction is 0.027 in case of the topsoil strength.
  - 0.1 (m) change of the topsoil layer thickness changes the safety factor by 0.01.

# $Fs=(1.783-1.351 \ h + 0.213 \ h^2 + 1.156 \ I_{peat} + 0.272 \ I_{topsoil} + 0.091 \ D_t) \delta_{Fs}$

# **Table of contents**

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - General conclusions
  - RSM (Response Surface Method)

![](_page_50_Figure_12.jpeg)

# Conclusions

- Three out of six examples (*i.e.* EX2-1, 5 and 6) set by ETC10 – Evaluation of Eurocode 7 – has been solved by using Level III reliability based design.
- 2. it is not soil properties spatial variability that controls the major part of the uncertainty in many geotechnical designs.
- 3. The error in design calculation equations, transformation of soil investigation results (*e.g.* SPT N-values, FVT, CPT *qc*) to actual design parameters (*e.g. su, f*, resistance values), and statistical estimation error are more important factors.

# Table of contents

- RBD (Reliability Based Design) Level III, II and I
- Two sources of LSD in Structural Eurocodes (Structural vs. Geotechnical)
- Level III RBD: method employed in this study
  - Uncertainties and calculation procedure
- EX2-1: Pad foundation on homogeneous sand
  - SLS design for settlement
  - ULS design for stability
- EX2-5: Embankment on peat ground
- Conclusion
  - General conclusions
  - RSM (Response Surface Method)

![](_page_52_Figure_12.jpeg)

# **RBD** by response surface method

![](_page_53_Figure_1.jpeg)

# **RBD** by response surface method

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

# Merits of RSM (response surface method)

- Release geotechnical engineers from the uncomfortable feelings for RBD tools by separating geotechnical design part and RBD part.
- 2. Monte Carlo simulation, a very straightforward tool, is only RBD tool employed.
- 3. The response surface (RS) itself contains considerable amount of useful design information.
- 4. Direct geotechnical designers to make the most of their knowledge, experiences and engineering judgments in obtaining the RS.

![](_page_56_Figure_5.jpeg)

# **RBD** by response surfaces

![](_page_57_Figure_1.jpeg)

![](_page_58_Picture_0.jpeg)

#### References

- Galanbos, T.V. (1992): Design Code, in Engineering Safety, ed. D. Blockley, McGraw-Hill Book Com.
- Mayerhof, G.G.(1992) Development of limit state design, Proc. Int. Sym. on limit state design in geotechnical engineering, vol. 1, pp.1-12.
- Brinch Hansen, J. (1967): The philosophy of foundation design: criteria, safety factors and settlement limits, Bearing Capacity and Settlement of Foundations, ed. A. Vesic, Duke University.

![](_page_59_Picture_4.jpeg)

# EX 2-6 : PILE FOUNDATION IN SAND

![](_page_60_Figure_1.jpeg)

Determine bored pile length *L* (m) (*D* = 0.45 m) spaced 2.0 (m) centres permanent load = 300 (kN) vertical variable load=150 (kN).

Pleistocene fine and medium sand covered by Holocene layers

# EX2-6: Mean and SD of converted SPT-N of each layer

| layer | Soil description                          | Depth (m)   | Mean<br>(SPT N) | SD<br>(SPT N) |
|-------|-------------------------------------------|-------------|-----------------|---------------|
| 1     | Clay with sand seams                      | 0.0 - 1.9   | 7.5             | 3.66          |
| 2     | Fine sand                                 | 1.9 - 2.9   | 14.8            | 4.58          |
| 3     | Clay with sand seams                      | 2.9 - 4.0   | 9.2             | 1.44          |
| 4     | Fine silty sand                           | 4.0 - 9.0   | 10.3            | 3.22          |
| 5     | Fine silty sand with<br>clay & peat seams | 9.0 - 11.0  | 16.2            | 3.31          |
| 6     | Clay with sand seams                      | 11.0 - 12.3 | 10.1            | 1.45          |
| 7     | Clay with peat seams                      | 12.3 - 13.0 | 11.1            | 1.51          |
| 8     | Clay with peat seams                      | 13.0 - 15.0 | 13.7            | 0.54          |
| 9     | Fine sand                                 | 15.0 - 17.0 | 13.6            | 7.24          |
| 10    | Fine sand                                 | 17.0 -      | 27.0            | 3.71          |

# EX 2-6 : PILE FOUNDATION IN SAND Transformation of qc to SPT-N

N-value

![](_page_62_Figure_2.jpeg)

 $q_c$  $\frac{p_a}{2} = 5.44 D_{50}^{0.26}$ N

where

 $p_a$  = atmospheric pressure,  $D_{50}$  = 50% grain size of soil. No bias in the conversion but SD is 1.03.

Kulhawy and Mayne (1990, Fig. 2.30),

## EX2-6: Performance function or RS

$$M = U\delta_f \sum_{i=1}^n \delta_{ti} f_i (\delta_t N_i) L_i + \delta_{qd} q_a (\delta_t N_n) A_p - \delta_{Gk} G_k - \delta_{Qk} Q_k$$

#### where,

 $\delta_f$ : uncertainty of estimating pile shaft resistance,  $f_i$ , by SPT-N  $\delta_{qd}$ : uncertainty of estimating pile tip resistance, qd, by SPT-N  $\delta_t$ : uncertainty of transformation from CPT qc to SPT-N  $\delta_{Gk}$ : uncertainty on characteristic value of permanent load.  $\delta_{Ok}$ : uncertainty of characteristic value of variable load.

![](_page_63_Figure_4.jpeg)

#### **EX2-6: Statistical properties of the basic variables**

| Basic variable | Mean  | SD    | Distribution | Note                           |
|----------------|-------|-------|--------------|--------------------------------|
| $\delta_{Gk}$  | 1.0   | 0.1   | Ν            | $G_k = 300 \text{ (kN)}^{(1)}$ |
| $\delta_{Qk}$  | 0.6   | 0.21  | Gumbel       | $Q_k = 150 \text{ (kN)}^{(1)}$ |
| $\delta_{\!f}$ | 1.07  | 0.492 | LN           | Okahara <i>et.al</i> (1991)    |
| $\delta_{qd}$  | 1.12  | 0.706 | LN           | Okahara <i>et.al</i> (1991)    |
| $\delta_t$     | 1     | 1.03  | LN           | Kulhawy & Mayne (1990)         |
| N1             | 7.51  | 3.66  | Ν            | unit: SPT N-value              |
| N2             | 14.80 | 4.58  | Ν            | unit: SPT N-value              |
| N3             | 9.24  | 1.44  | Ν            | unit: SPT N-value              |
| N4             | 10.33 | 3.22  | Ν            | unit: SPT N-value              |
| N5             | 16.17 | 3.31  | Ν            | unit: SPT N-value              |
| N5             | 10.08 | 1.45  | Ν            | unit: SPT N-value              |
| N7             | 11.14 | 1.51  | Ν            | unit: SPT N-value              |
| N8             | 13.68 | 0.54  | Ν            | unit: SPT N-value              |
| N9             | 13.56 | 7.24  | Ν            | unit: SPT N-value              |
| MID            | 26.98 | 3.71  | N            | unit: SPT N-value              |

# EX 2–6 : PILE FOUNDATION IN SAND – results

![](_page_65_Figure_1.jpeg)

pile length of more than 18 (m) is necessary for b=3.8

# EX 2-6 : PILE FOUNDATION IN SAND – results

![](_page_66_Figure_1.jpeg)

| $\beta$ =                      | 2.3  | 3.1  | 3.8  |
|--------------------------------|------|------|------|
| Consider<br>all<br>uncertainty | 11.5 | 15.0 | 18.0 |
| Excluding $\delta_{\!qd}$      | 11.3 | 15.0 | 17.1 |
| Excluding $\delta_{\!f}$       | 9.5  | 12.0 | 13.3 |
| Excluding $\delta_t$           | 8.4  | 11.0 | 12.7 |

Reliability Index \_ Beta

## **Development of LSD – Structural Engineering**

![](_page_67_Figure_1.jpeg)

![](_page_67_Figure_2.jpeg)

![](_page_67_Picture_3.jpeg)

#### 19<sup>th</sup> Century

ASD (Allowable Stress Design) 1920 th

Ultimate Strength Design researches in USSR and Eastern Europe

#### After World War II

Classic Reliability Based Design (Freudenthal, 1945 etc.) LSD (Limit State Design) FOSM (First Order Second Moment Method) (Cornell、1968) 1970 th

FORM (First Order Reliability Mehtod) (Ditlevsen, 1973; Hasofer & Lind, 1974etc.)

**Development of Structural Eurocodes** (JCSS, Joint Committee on Structural Safety)

# **Procedures for different examples**

![](_page_68_Figure_1.jpeg)

# Level III RBD (reliability based design): Full distribution approach

![](_page_69_Figure_1.jpeg)

Failure probability is obtained By integrating portion of the distribution in failure region.

$$P_F = \iint_D f_{RS}(r,s) dr ds$$